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Intermittence and roughening of periodic elastic media

E. T. Seppk,! M. J. Alaval and P. M. Duxburg
ILaboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland
2Department of Physics and Astronomy and Center for Fundamental Materials Research, Michigan State University,
East Lansing, Michigan 48824-1116
(Received 8 October 2000; published 27 February 2001

We analyze intermittence and roughening of an elastic interface or domain wall pinned in a periodic
potential, in the presence of random-bond disorder #lland 2+1 dimensions. Though the ensemble
average behavior is smooth, the typical behavior of a large sample is intermittent, and does not self-average to
a smooth behavior. Instead, large fluctuations occur in the mean location of the interface and the onset of
interface roughening is via an extensive fluctuation which leads to a jump in the roughness aof otider
period of the potential. Analytical arguments based on extreme statistics are given for the number of the
minima of the periodicity visited by the interface and for the roughening crossover, which is confirmed by
extensive exact ground state calculations.
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[. INTRODUCTION intermittent behaviors involved in PEM, when the amplitude
of the applied periodicity is changed. This section also in-
The properties of extended, elastic manifolds, like domaircludes a discussion of the numerical method used. In Sec. IlI
walls in magnets or contact lines of liquids on solid sub-the first type of the intermittent behavior, jumps of mani-
strates become very varied if one introduces some disordefolds, is analyzed using extremal statistics, and is demon-
Defects on a surface or impurities in a magnet often pin suctrated with numerical simulations. Section IV discusses the
interfaces. The recent interest in their physics follows fromsecond type of the intermittent behavior, the roughening of
the observation that the energetics in the presence of raf#e manifolds, with the aid of droplet arguments and further
domness is obtained by optimizing the configuration of thenumerics. In Sec. V the roughening behavior is studied in
manifold [1]. A competition between elasticity and the ran- {10}- and{100-oriented lattices which have a lattice-induced
dom potential arises. It results in a scale invariance describe@eriodicity; we compare these systems with other PEM. The
by aroughness exponetitat measures the geometrical fluc- Paper ends with conclusions in Sec. VI.
tuations, and arenergy fluctuation exponetiat measures
the variation of the manifold energy around its mean. It is Il. PERIODIC ELASTIC MEDIA
also related to the energy scales of excitations from the state . o ) )
of minimum energy. The experimental interest in these sys- 1h€ continuum Hamiltonian that describes the competi-
tems arises, in particular, due to the energetics: timelion between elasticity, periodicity, and randomness is given
dependent phenomena like creep and coarsetimgnag- by
nets follow slow, activated dynamics dictated by the energy y . . 1.
barriers that can be described with such expongtits Hpem=f {E{Vh(r)}zvL h(r)}+Veth(n}idr. (1)
Frequently manifolds also experience a periodic potential.
In the case of superconductors, one periodicity is due to the . i ) i -
rotational invariance of the phase. A second periodicity isi€reh(r) is a single-valued height variable, ands a (d
induced when flux lines form a lattice. Similarly, in the case —1)-dimensional vectorV, is a periodic potentia(of am-
of charge density wave€CDW’s) or domain walls in mag- plltudae Vy and wavelength\) in the height direction and
nets, one periodicity is due to the underlying lattice structurez{h(r)} is the disorder, which we take to be of the random
and a second is due to the self-organized periodicity of thdond type with delta-function correlations. The physics of
CDW'’s or magnetic domains themselves. Generic modelgnanifolds described by Eql) was discussed recently, since
for these phenomena are callgzbriodic elastic media there may exist aoughening transitionthat separates an
(PEM), and are the focus of this work. As noted recently thealgebraically rough regime from a logarithmically rough one
asymptotic behavior of the PEM class depends on the type afs the potential strength is vari¢d]. However, in the di-
periodicity, with the case of a periodic surface tension beingnensions considered hefd=(1+1),(2+1)] these mani-
in one universality clas$3], while the case of an applied folds are always rough at large enough length sdd&lgwith
periodic potential is in anothd#]. In this work we are in- the corresponding roughness exponef#2/3 and{=0.41
terested in the case of an applied periodic potential, in par=0.01 ford=(1+1) and(2+1), respectively. The issues we
ticular the intermittent behavior of interfaces which experi-raise here arise in all dimensions, and so we numerically
ence a competition between pinning due to the periodidllustrate them in (1 1)- and (2+ 1)-dimensional systems.
potential and pinning due to random bond disorder. We calculate the exact location and morphology of inter-
The paper is organized as follows. Section Il introducedace ground states for a given configuration of bond disorder.
the Hamiltonian of periodic elastic media and describes twd-or this configuration of bond disorder we vary tampli-

1063-651X/2001/6(8)/0361267)/$15.00 63 036126-1 ©2001 The American Physical Society



E. T. SEPPAA, M. J. ALAVA, AND P. M. DUXBURY PHYSICAL REVIEW E 63 036126

tudeof the periodic modulation. Interfaces which experiencethe other orientations{{0},{100}) we use the intrinsic lat-
this combination of a periodic potential and random bondtice potential as discussed below. Note that i small, the
disorder show a variety of intermittent behaviors as the améiscrete representation of the potential will by necessity be
plitude of the potentialy,, is varied. Two types of intermit- rather coarse. The exact interface ground state in this random
tence which we study in detail are: intermittent jumps in theenergy landscape is found using a mapping to the minimum-
center of mass location of the interface, and intermittencut maximum-flow optimization problerf8]. We have de-
jumps in the roughness of the interface. The first type is mosteloped a highly efficientin both memory and speginple-
easily discussed at strong pinniiigrge values of the key mentation of the push-and-relabel method for the maximum
ratio v =Vo\J/8J), where the interface is always pinned flow problem[9]. The exact ground state of a manifold in
near a minimum of the periodic potential, but it jumps be-System with 1000 000 sites can be found in about 1 min on a
tween different minima as is varied. It does this to maxi- Workstation.

mize the energy gain due to small fluctuations about a flat

interface. In the limit of large system sizes there can be an I1l. JUMPS BETWEEN POTENTIAL VALLEYS

infinite number of such jumps with, of course, no overlap
between the ground states of interfaces in different minima.

We develop a scaling theory to demonstrate that the numbéPOdEI.(l) to S'T‘a" variations in the. amplitudyo of the
of minima explored aw is varied over a finite range is of PotentialV,, with wavelengthi. A simple scaling theory

order In(,), whereL,, is the system size in thedirection in captures many aspects of this sensitivity. The scaling theory

which the manifold fluctuates. Such intermittence is similar.beglns with the central limit form for the energy of a flat

to the chaos seen in spin glasgedere it implies a vanish- interface 'OC"?“ed at a minimum of the periodic poter_1tia|,
ing overlap between spin configurationand is related to P.(E). If the interface is exactly flat, the energy fluctuations

replica symmetry breakinig]. It is also a close cousin of the &r€ just due to the random bond disorder, so that
phenomenon that takes place if the disorder is changed ran- 9
domly [7]. b (E)— 1 p{ (E-JA) ]

. . . 1(B)= ——=—exp — ———, )

A second type of intermittence occurs when it becomes Jmo o
energetically favorable to form a large domain excitation.

This means that a finite fraction of the interface is in onewhere A=L%"! is the area of the manifold, and?
minimum of the potential, while another finite fraction is in =2A8J? is the width of the Gaussian distribution.

an adjacent minimum. These large fluctuations are the clas- Now consider a system in which there ademinima in
sical “Imry-Ma”-type droplets, and have a linear extension the periodic potential. The probabilityy(E) that the lowest

of the order of the system size. By slowly decreasing theninima has energf is Ly(E)=NP;(E){1-C(E)}"",
potential, we are able to find the threshold at which the firswhere C,(E) =& P;(e)de. The difference in energyg,
domain excitation occurs, and to demonstrate its effect ofpetween the lowest energy state and the next lowest energy
the roughnes®/(v). We observe that since the domain exci- state of the manifold may also be simply calculated. We call
tation is of the order of the sample size, the roughness prahis difference in energy the “gap,” and its distribution
duced by that domain fluctuation is proportionaldoThus  Gn(9,E) is given by Gyn(g9,E)=N(N-1)P,(E)P4(E
there is afirst-orderjump in roughness. In contrast, a naive +9g){1—C,(E+g)}" 2. Stated more precisely(g,E) is
averaging of the roughness looks smooth and scales nicelthe probability that if the lowest energy manifold has an
This is due to a scaling of thegrobability of a jump of the  energyE, then the gap to the next lowest energy levefis
order\ occurring aty rather than being the self-averaging The average lowest energy level is given K¥y)
behavior of a typical sample. The exact numerical calcula=f”_ELy(E)dE. This is not analytically tractable. How-
tions are supported by scaling theories based on Imry-Maver, the typical value of this lowest energy is estimated
and large fluctuation ideas, which account for the jumpy befrom oNP4({E\))~1, which yields

havior of interfaces in a periodic potential.

The numerical calculations are carried out using Ising (En)y~JA—af{In(N)}2 €
magnets with random bonds. For a given configuration of ) _
bond disorder, we find the ground state interface in square 'O €stimate the typical value of the gap, we uS&(N
and cubic, nearest-neighbor, spin-half, ferromagnetic Ising” 1)P1((Em))P1((Em)+(g))~1, which, with Eq.(3), and
models. An interface is imposed along tfl} or {10 di-  the fact that(g)|<|(Ey)|, yields
rections of a square lattice, or along thelL} or {100 di-
rections of a cubic lattice, by using antiperiodic boundary (g)~
conditions. Periodic boundaries are used in directions paral-
lel to the interface, unless otherwise mentioned. The average
value of the exchange constantJs 1, while the random- whereo=2A8J andA=L%"1. The gap between minima
bond disorder is drawn from a uniform distribution of width of the potential is thus of order Ih(N)}*2, where N
8J. The periodic potentiaV,=V[0.5sin(27h/A\)+0.5] is ~ ~L,/\ andLy, is the system size perpendicular to the inter-
added to the random bond disorder, whiiis to be along a face. So the separation between minima grows increasingly
direction perpendicular to the average orientation of the insmall asL,, increases. Similar extreme statistics problems
terface. This is done for thgl1l} and{111} cases, while in were discussed in Reff10].

We first discuss the sensitivity of the ground state of

a?In(o) o In(o)
(JA=(Ewm))  {In(N)}¥2’

4
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Given the small gap between the metastable minima of 160 -
the periodic potential, due to the presence of random bonds, 140 | 2¥;:8:‘; ]
we now need to find the typical change Yy which can AT I
cause a level crossing in which the global ground state 120 ¢ viero H
changes from one minimum of the periodic potential to an- = 100 M/”’m\ T
other[11]. The key effect that we must control is the fact that = et N
the interfaces areot flat even when confined to one mini- %D 8071 et
mum of the periodic potential. Instead they have a roughness _g 60 [ e
which is determined by the interplay between the curvature 40 |
of the periodic potential at its minima and the energy varia- A
tions of a manifold due to confinement. We now develop a 20 y
scaling theory for this phenomenon. 0 - - - - - - -
First we treat the confinement effect. Consider a manifold 0 20 40 60 80 100 120 140 160
in the presence of random bond disorder, and which is con- r
fined in a slab of sizéx L9™*. The energy of such aslabis g 1. interface configurations in11 dimensions for various
given by Vo. In this calculation the disorder configuration and wavelength
d-1 (N=16) are fixed at6J=1. As V, is varied, the interface jumps
E(l,L)= (L_> (el M +coLld), (5  between the minima of the periodic potential. The solid lines denote
X

the position of the largest values of the sinusoidal periodic potential
V. The lattice size is 160160, and the interfaces are oriented

whereL, =1, This yields
X y along the{11} direction. Note that the disorder exactlythe same

E(l,L) 3 for each value of/,.
6(|)=?=C1+C2| X, (6)
L
(Vo Vo) — eopi( Vo) = =2t s (12)
where €optl Vo 0)~ €opt V0) = Vo 0-
x=(d—-1-6)/¢. (7)

This change in energwglso varies randomly from one mini-

Note thatx is positive so that the confinement energg-  Mum of the 'potential to another. the vgriation in the en-
creasesas the confinement lengttincreases, as expected. €rdy changeis of order the gap found in Ed4), then we
To include the effect of the confining potential, consider®XPect the ground state location to change from one mini-

the behavior near a minimum of the periodic potential to bemum of the potential to another. Thus we find the typical
of the form value of 6V, between jumps to be found from

1 \Y

x

(960 . 1/2
V)=V, ) (8 (Ldla—p&)o) =(0)- (13
0

V

whereV,=V,/46J, andy is a positive exponent to ensure that Thus, using Eq(4),
the potential is confining. For example, a sinusoidal potential

hasy=2. The behavior of a manifold in this confining po- C{@? [ de\ T () (xty) [ NVp| YY)

tential, and in the presence of an additive random bond dis- WOJump_F (9_);0 L9l cgx C,

order, is estimated by considering its total energy as a func-

tion of | [i.e., combining Eqs(5) and (8)]: 5J2{In(Ld‘15J2)}2()\XVO)V’(”V) 14
6J '

(9)

€total=C1 T Col X+ V)

1Y In(N)
d

where)V,=V,/8J. There are several interesting features of
this equation. First, note thalVy;,nm, increases logarithmi-

Finding the minimum of the total energy yields the manifold ; \ v
cally with the area of the manifold,”~ *. On the other hand,

roughness, e
the number of minimaN~Ly/\, and éVyjymp, decrease
Cox\Y | VO +X) logarithmically withL,. The dependence afVj,mp ON X
le= Vo ' (10 and onV, is qualitative, as expected in that it increases
monotonically with both of these factors.
with the energy of this optimal manifold being The intermittence implied by resu{iL4) is illustrated in
ypx U(y+x) Figs. 1 and 2. As a function &fj, the manifold mostly stays
€ —CitC c2Vo (11) almost unchanged in the current valley of minimum energy,
opt L ES \xy ’ and occasionally jumps to another, new minimum of the pe-
riodic potential. A useful way to illustrate this intermittence
wherecs; is a constant that depends grandy [12]. as a function oW is to calculate theonfigurational overlap
Now the variation in the optimal energy, with a small between the ground states as a functionvgf(in analogy
variation in)y, is given by with the overlap used in spin glasg9ds]). The overlapq is
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amplitude (V,) FIG. 3. The interface widtfw?=L~0"I%,(h;—(h}))?], and

the total energy as a function ¥, for A=4 andéJ=1. The results

FIG. 2. The overlapq:L’(d’l)Eiﬁ(hil—hiz) between ground are for a fixed disorder configuration and from the same calcula-
states as the amplitude of the poten¥iglis varied §J=1). AsV, tions as Fig. 2. (@ (1+1)-dimensional system. (b)
is decreased, we calculate the overlap between the interface cof2+ 1)-dimensional system. Systems with free and periodic bound-
figuration at one value 0¥, (described by{h!}) and the interface ~ aries have the same realization of randomness.
at the next value oW, (described by{h?}). The corresponding
mean heightgh) are shown in the insets. The calculations were onstrate for the (2 1)-dimensional case.
carried out as for Fig. 1; however we used 300 different values of The interface energy of a subregiarof the interface of
Vo with AV,=10"2 for the same realization of disorder, and the the areaA is, of course, also drawn from the Gaussian,
wavelengtha =4. (a) Two-dimensional case, with the system size Pl(E):(1/\/;g)exp{—(E—Ja)2/02}, but now with a stan-
LXL,=1024x1025. (b) (2+1)-dimensional interfaces oriented dard deviationo?=2a8J%. Some of these energy fluctua-
along the{111} direction for lattices of sizé.*xL,=100X129.  {jons are favorable while others are unfavorable. The largest

. . . ' favorable fluctuations are found by settidgrP,(E)~1,
1 if the two configurations are the same and 0 if they have ngimilarly to the extreme statistics arguments as in deriving

bonds in common. Figure 2 presents the overlap as a fungq. (3), and as the value of the energy gain this gives
tion of the amplitude of the pinning potentialy, for inter-

faces in square and cubic lattices. The intermittent nature of (Egy~o{In(A)}*2 (15

periodic elastic media is clearly evident in these figures.

Note that while the overlap and the interface roughness are A flat interface would tend to “take advantage” of such

intermittent, theinterface energysee Fig. 3 does not show large favorable energy fluctuations in adjacent minima of the

any obvious signs of the jumps. Due to the logarithmic re-periodic potential. However, this requires having segments

duction in the gap siz¢Eg. (4)], the interface will only of the interface crossing the barriers in the periodic potential.

sample an infinitesimal fractiofin(N)/{In(LY")}?] of the =~ We define the barrier cost per bond to hf, and

available minima of the potential as we swaepNeverthe- this is given by the integral over the barriersy

less a large number of different mininja-In(Ly)] will be = (1\){f§V(X)dx}=€V,. We shall use the last of these

sampled by the system, in particularLif is increased while  forms, as we shall often be interested in the dependence on

the transverse size is kept fixed. V,. We consider (¥ 1)- and (2+1)-dimensional systems
of wavelength\, lengthL, width B, and A=BL so thata,

IV. ROUGHENING OF THE MANIEOLDS =\B is the area of the part of the interface which crosses the

energy barrier, and=LB/2 in order to maximize the energy
The behavior of the roughness of interfaces seen in Fig. gain. B=1 is the two-dimensional case, am=L in the

is also strongly intermittent, especially intll dimensions. isotropic three-dimensional case. The barrier energy cost is
The large jumps in roughness seen in this figure are easilgiven by

understood from the Imry-Ma argumeihfisf] concerning the
instability of interfaces to large fluctuations, as we now dem- Ep=€VoA\B. (16)
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FIG. 4. (a) Average size of the first jump in roughnedsv,
when Vo=V, normalized using. and calculated as the differ- FIG. 5. Scaled roughness of interfaces oriented/1d} and
ence between roughness values just after a jump and before that, kL1 directions, for various values of, andL. (a) {11}-oriented
a function of the volume of the systems. We have carried out simuSystems withh =16, 6J=1, and system sizes’=20°~128G. The
lations for a strips of dimensiob= 1000, B=1-64, andL, =5\, number of realizations is 200 for each system size\dndrhe solid
for various values of\. The number of realizations is 100b) line corresponds the slope=2/3. (b) {111} -oriented systems with
Average value of the amplitude of the potenwz VO,C at which A=4 and SyStem SiZdSSZ 21.03—903 The number of realizations is
the |arge_sca|e “|mry-Ma" fluctuation 000urs§0: 1) The data 200 fOI’ eaCh SyStem SiZéJ andVO. The Solid “ne Corl’esponds the
are from the same simulations as(@ for the (2+1)-dimensional ~ slope{=0.42, while the dotted line i§=0.36.
case, i.e.B>1. The results are scaled using predict{@).

7

1

) ) ) to a minimum of the potential. For a large range\gf the
Equating Egs.(15) and (16) yields the estimate of the oughness stays the same or increases sldimlyhree di-
parameter values at which the first Imry-Ma jump in the mensjong until finally at a critical value a discrete jump
manifold roughness occurs: occurs due to the Imry-Ma nucleation process. This implies
that the roughening process, as defined by the point at which
(evo)\) _ \/E{ln(BL)}llz} the interfaces begin to fluctuate outside a single valley, has a
8J 1 B first-order character It is seen from Fig. @) that the first
jump is «\, as expected for an extensive fluctuation. The
In the (1+1)-dimensional case the logarithmic correction critical value V., at which the first extensive fluctuation
drops out, by elementary considerations. occurs[Fig. 4(b)], follows roughly the prediction of Eq17),
An Imry-Ma fluctuation of sizea leads to a jump in the though the slope is closer to 3/4 instead of 1/2.
roughness, which is of orderxa/A=\/2. We emphasize The analysis of the last paragraph clearly demonstrates
that this is the expected outcome in any system with fixedhat the roughening of manifolds in periodic elastic media is
disorder, whenV, is varied. IfB«L, there is an exponential via a first order jump in roughness, which is of the order of
dependence of the crossover length on the parameters; ftite wavelength of the periodic elastic medium. It is interest-
example, forB=L, ing to investigate whether this first order jump is observable
in the ensemble-averaged behavior. Scaled, ensemble-
eVon |2 averaged plots of the manifold roughness as a functiovof
Li~ex X ' (18) are presented in Fig. 5 f@d 1}-oriented interfacef-ig. 5a)]
and for {11%-oriented interfacegFig. 5b)]. These plots
an exponential dependence orj14]. scale quite nicely with the characteristic length and rough-
In Fig. 3, we present the numerically observed behavioness suggested by Eq47) and(18). In the two-dimensional
of the interface roughness as a function\yf We observe case, there is also a clear indication of the first order charac-
that for very largeV, the interfaces are flat, and are confinedter of the transition. The three-dimensional data give little
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FIG. 7. (a) Scaled roughness with E¢L8) for continuum dis-
order. The system sizes ranges frbAx L, =43 to 20X 100. The

FIG. 6. Behavior of the roughness of interfaces oriented in thenumber of realizations ranges from 500 for system sizés Ly,
{100 direction. (a) The intermittence of a single realization as a <2140°x 100 to 200 for the larger onegb) Scaled roughness with
function of the amplitude of uniform disordesJ. The disorder EQ.(18) or dilution type of disorder. The system sizes ranges from
configuration is the sam@vith both free and periodic boundarjes L?XL,=4% to 200" 100 (and even up to 4G0for p=0.90). The
but the ratiosJ/J is slowly increased in steps of 0.01. The system number of realizations ranges from 500 for system sizés Ly,
size isL3=100%. (b) The histograms of the roughness valwefor < 140> 100 to 200 for the larger onéwith the exception of larger
system sizes?X L,=50°. .. 206 x 100. The peak of the distribu- System sizes fop=0.90).

tions jumps fromw=0 to w=0.5 when the system size increases. o
The number of realizations is 500 for smaller system sizes and 208Uggested by the PEM model. That is, in a large sample the
for L2x L,=200?x 100. 83/3=0.9. system roughens via a first order jump in the roughness due

to an extensive fluctuation. The behavior of one sample as a
indication of the first order jump in roughness, and underfunction of disorder is presented in Figai The probability
score the problems with a naive averaging of the data. Howdistributions of the roughness for sevels are presented in
ever, we do not have any clear explanation, of why theFig. 6b), in which we observe how one can pass through a
roughness values in the plateau before the jump can be cotoexistenceegion with both flat and rough samples lasgs
lapsed with the same prefactor as in the asymptotic roughvaried. The intermittent behavior typical of PEM is evident

roughness (w)

ness in thg 111} case, but not in thél1} case. in Fig. 6(a), but is obscured by the averaging in Figaj7
Though a jump transition from a flat phase to an algebra-
V. PERIODICITY DUE TO THE LATTICE ically rough phase occurs in both the periodic elastic model

in the {111} direction and for interfaces in thigl0C} direc-

It is of interest to see if the first order character of thetion, there is an important difference in the behavior of these
roughening of PEM extends to manifolds in the0} and  models[compare Figs. ®) and 7a)]. In the PEM model in
{100 directions. In these directions, the lattice itself intro- the {111} direction, there is a pronounced plateau in the
duces a periodicity, which, for example, is the origin of theroughness due to the saturation of wandering within one well
thermal roughening transition in lattice models in three di-[Fig. 5b)]. In contrast, in thg 100 direction, the interface
mensions. Thus we do not need to introduce an extra perkemains flat until the transition to the algebraically rough
odic potential, and instead we just study the roughness gfhasdsee Fig. 7a)]. The extent of the plateau region can be
these manifolds as a function of disorder. We have studieguned in the PEM model by varying the shape of the poten-
the roughness of100b manifolds as a function of disorder tial near the minimum and by varying the wavelength. We
before, and in those studies we ensemble averaged the ddtave also carried out calculations for the case of dilution
[15]. In light of the understanding developed above, we havelisorder[Fig. 7(b)], and found a similar behavior, with the
revisited this problem, and found that the typical behavior inaveraged behavior presented in Figa)7 With dilution dis-
both the{10} and {100 problems is very similar to that order the pronounced plateau is not due to any roughening
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inside a valley, but because of rare “bumps,” whose occur+eveals a much richer scenario in which each manifold
rence is due to the Poissonian statistics of diluted bonds. Thaakes intermittent jumps, finally culminating in a first-order
averaged data scale quite well withs)J)?=p(1 change in its roughness. This process is also important, since
—p)J?(pJ)?>=(1-p)/p, whereJ=1, and the variance of it is related to the asymptotic scaling of the roughness. Re-
the binomial distribution varstd®=p(1—p)J? with the cent experiments on the creep of+1)-dimensional sys-
corresponding meapJ, andp is the occupation probability tems[2] showed that scaling arguments of activation energy
of a bond. Thus we find, in contrast to our earlier conclusiongarriers can match real systems, using predictions based on
from similar data, that at large enough length scales interrough manifolds. The time scales also depend crucially on
faces in thd 100 orientation are algebraically rough, and are the actual amplitude which is set in our picture by the rough-
consistent with the PEM model. ening transition.

A further important feature of the large fluctuation char-  Also, the intermittence in the early stages would merit
acter of the roughening transition is that it is strongly depenexperimental consideration. Such jumps in the mean location
dent on the boundary conditions. This is illustrated in Figs.of the interface could be studied in the asymptotic rough
2(b) and 5a), in which the roughness is depicted as a func-regime. In an independent study we have pointed out this
tion of the amplitude of the disorder for both periodic andmechanism for both fracture surfaces, arising from random
free boundaries, and with theamedisorder configuration. fuse networks and from yield surfaces of perfectly plastic
The threshold value 0¥, at which the first order jump in media which are equivalent to the minimum energy surfaces
roughening occurs is typically smaller for the case of peri-studied herd16].
odic boundaries. Large fluctuations can take advantage of the The focus of renormalization group and variational calcu-
boundary to reduce the cost of crossing the energy barriefations in this problem has been dimensiahs(D+1)>4,

This sensitivity to boundary conditions is a hallmark of thesince there one encounters two asymptotic regimes separated

large fluctuation effects discussed here. by a transition. Of the two phenomena discussed here, at
least the intermittent jumps in the center of mass location of
VI. CONCLUSIONS the interface should persist in that case.
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